Deep Learning-Based Joint Beamforming Design for Multi-Hop Reconfigurable Intelligent Surface (RIS)-Aided Communication Systems

Author:

Chen Xiao1,Ye Jiaoyang1,Wei Yuxuan1,Shi Jianfeng2,Zhu Jianyue2

Affiliation:

1. School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Reconfigurable intelligent surface (RIS) is one of the promising technologies for sixth generation communications due to its advantages including energy saving, high spectral efficiency, etc. However, the non-convex joint beamforming design is a challenge, especially in the multi-hop RIS-assisted communication system. This paper proposes a deep learning-based joint beamforming (DLBF) design, aiming to maximize the system data rate for multi-hop RIS-aided communication systems. The proposed DLBF design consists of the reflection matrices design of all RISs and the transmit beamforming design at the base station, which has a reduced computational complexity. Numerical results show that the proposed DLBF can achieve 1.8 bit/s/Hz sum rate gain compared to the conventional beamforming method for the two-user scenario, which can be enhanced by large-scale users. The sum rate performance can be improved by increasing the number of RISs due to the reflection gain, and corresponding results provide a guidance of the multi-hop number selection for further investigation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3