Abstract
When designing a microwave circuit involving substrate integrated coaxial lines (SICLs), it is important to know what real crosstalk between SICLs is. A measured crosstalk will be a good reference value in a practical design. In addition, it is also needed to compare and check the crosstalk from the simulation and calculation formula with measured results. However, it is very difficult to measure the crosstalk between SICLs because it is theoretically very low. In this study, for the first time, the crosstalk characteristics of a SICL are evaluated through experimental design and measurements. By adjusting the layout of the structures and implementing controlled experiments, interference caused by the presence of leaks and radiation at the interface and structural transitions is effectively suppressed. The experimental results show that for two parallel SICLs with a length of 30 mm and an interval of 5 mm, the isolation is greater than 80 dB for the measured frequency range of 1–8 GHz, significantly better than the results of the grounded coplanar waveguide (GCPW).
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering