Towards Enhancing Coding Productivity for GPU Programming Using Static Graphs

Author:

Toledo LeonelORCID,Valero-Lara PedroORCID,Vetter Jeffrey S.ORCID,Peña Antonio J.ORCID

Abstract

The main contribution of this work is to increase the coding productivity of GPU programming by using the concept of Static Graphs. GPU capabilities have been increasing significantly in terms of performance and memory capacity. However, there are still some problems in terms of scalability and limitations to the amount of work that a GPU can perform at a time. To minimize the overhead associated with the launch of GPU kernels, as well as to maximize the use of GPU capacity, we have combined the new CUDA Graph API with the CUDA programming model (including CUDA math libraries) and the OpenACC programming model. We use as test cases two different, well-known and widely used problems in HPC and AI: the Conjugate Gradient method and the Particle Swarm Optimization. In the first test case (Conjugate Gradient) we focus on the integration of Static Graphs with CUDA. In this case, we are able to significantly outperform the NVIDIA reference code, reaching an acceleration of up to 11× thanks to a better implementation, which can benefit from the new CUDA Graph capabilities. In the second test case (Particle Swarm Optimization), we complement the OpenACC functionality with the use of CUDA Graph, achieving again accelerations of up to one order of magnitude, with average speedups ranging from 2× to 4×, and performance very close to a reference and optimized CUDA code. Our main target is to achieve a higher coding productivity model for GPU programming by using Static Graphs, which provides, in a very transparent way, a better exploitation of the GPU capacity. The combination of using Static Graphs with two of the current most important GPU programming models (CUDA and OpenACC) is able to reduce considerably the execution time w.r.t. the use of CUDA and OpenACC only, achieving accelerations of up to more than one order of magnitude. Finally, we propose an interface to incorporate the concept of Static Graphs into the OpenACC Specifications.

Funder

European Union's Horizon 2020 Research and Innovation program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3