YOLO-Based Object Detection for Separate Collection of Recyclables and Capacity Monitoring of Trash Bins

Author:

Wahyutama Aria Bisma,Hwang Mintae

Abstract

This study describes the development of a smart trash bin that separates and collects recyclables using a webcam and You Only Look Once (YOLO) real-time object detection in Raspberry Pi, to detect and classify these recyclables into their correct categories. The classification result rotates the trash bin lid and reveals the correct trash bin compartment for the user to throw away trash. The performance of the YOLO model was evaluated to measure its accuracy, which was 91% under an optimal computing environment and 75% when deployed in Raspberry Pi. Several Internet of Things hardware, such as ultrasonic sensors for measuring trash bin capacity and GPS for locating trash bin coordinates, are implemented to provide capacity monitoring controlled by Arduino Uno. The capacity and GPS information are uploaded to Firebase Database via theESP8266 Wi-Fi module. To deliver the capacity monitoring feature, the uploaded trash bin capacity information is displayed on the mobile application in the form of a bar level developed in the MIT App Inventor for the user to quickly take action if required. The system proposed in this study is intended to be implemented in a rural area, where it can potentially solve the recyclable waste separation problem.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference19 articles.

1. South Korea’s Plastic Problem Is a Literal Trash Fire https://www.cnn.com/2019/03/02/asia/south-korea-trash-ships-intl/index.html

2. Environment at a Glance Indicator,2022

3. Household waste separation intention and the importance of public policy

4. Reduce, Reuse, Recycle: Alternatives for Waste Management https://aces.nmsu.edu/pubs/_g/G314.pdf

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3