Three-Stage Rapid Physical Design Algorithm for Continuous-Flow Microfluidic Biochips Considering Actual Fluid Manipulations

Author:

Liu Genggeng123,Liu Yufan123,Pan Youlin123,Chen Zhen123

Affiliation:

1. College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China

2. Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou University, Fuzhou 350116, China

3. Fujian Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350116, China

Abstract

With the continuous development of microfluidic technology, continuous-flow microfluidic biochips (CFMBs) are being increasingly used in the Internet of Things. The automation design of CFMBs has also received widespread attention. The architecture design of CFMBs is divided into a high-level synthesis stage and a physical design stage. Among them, the problem of the physical design stage is very complex. At this stage, the chip architecture is generated based on the device library and a set of flow paths, taking into account the actual fluid manipulations, while minimizing the cost of the chip, such as the number of ports, total length of flow channels, number of flow channel intersections. As fabrication technology advances, the number of devices integrated into CFMBs is increasing. The existing physical design algorithms can no longer meet the design requirements of CFMBs in terms of time. Therefore, we propose a three-stage rapid physical design algorithm for CFMBs considering the actual fluid manipulations. The proposed algorithm includes a port-driven preprocessing stage, a force-directed quadratic placement stage, and a negotiation-based routing stage. In the port-driven preprocessing stage, a port-driven preprocessing algorithm is proposed to generate connection matrices between ports and devices to reduce the number of ports introduced. In the force-directed quadratic placement stage, we model the placement problem as an extremum problem of a quadratic cost function, which mathematically reduces the search space significantly and shortens the running time of the algorithm significantly. In the negotiation-based routing stage, a heuristic negotiation-based routing algorithm and a flow channel strategy that prioritizes the construction of parallel execution are proposed to reduce the running time of the algorithm while ensuring that the number of crossings in the routing solution is close to the optimal solution. Experimental results confirm that our proposed method is able to generate the high-quality solutions quickly. Under general scale problems, compared to the existing method based on ILP, our proposed method achieves a speedup ratio of 23,171 in terms of CPU time and optimizations in terms of number of ports and port reuse of 3.18% and 6.52%, respectively. These optimizations come at the cost of only a slight increase in the number of intersections, the flow length, and the number of flow valves. In addition, our proposed method can effectively solve large-scale problems that cannot be solved by existing method based on ILP.

Funder

Fujian Natural Science Funds

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3