On the Quasistationarity of the Ambient Electromagnetic Field Generated by Wi-Fi Sources

Author:

Tuță Leontin1,Roșu Georgiana2ORCID,Andone Alina3,Spandole-Dinu Sonia3,Fichte Lars Ole4

Affiliation:

1. Center of Excellence in Communications and Information Technology, ‘Ferdinand I’ Military Technical Academy, 050141 Bucharest, Romania

2. Department of Military Systems and Equipment, ‘Ferdinand I’ Military Technical Academy, 050141 Bucharest, Romania

3. ‘Cantacuzino’ National Medical-Military Research & Development Institute, 050096 Bucharest, Romania

4. Faculty of Electrical Engineering, ‘Helmut Schmidt’ University, 22043 Hamburg, Germany

Abstract

In recent decades, the widespread use of mobile phones and wireless technologies has led to a significant increase in radiofrequency electromagnetic fields (RF-EMFs), raising concerns about continuous RF-EMF exposure among the general population. Recent research indicates that real-life RF signals are more biologically active than controlled laboratory signals with a low variability, suggesting that living organisms can adapt to EMF exposure when the pattern has a low variability. However, using real-life sources with unpredictable variation signals in biological experiments contradicts the principle of experiment controllability. This paper aims to investigate the nature of signals generated by current sources of ambient EMFs in terms of stationarity, with the goal of replicating them in biological experiments to study the effects of EMF exposure. Employing a range of statistical methodologies, starting with descriptive statistical analysis and progressing to the advanced APDP and APTF methods, an examination is conducted on a collection of Wi-Fi signal recordings across various operating modes, with particular attention given to video streaming. The chosen datasets are scrutinized with respect to their adherence to a Gaussian distribution and the concept of stationarity. The results indicate that the observed Wi-Fi signals lack stationarity in both the time and frequency domains. However, based on the analytical findings, it is possible to generate signals in frequency that authentically replicate Wi-Fi signals, accounting for nonstationarity considerations.

Funder

Helmut Schmidt University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3