A Tracking-Based Two-Stage Framework for Spatio-Temporal Action Detection

Author:

Luo Jing1ORCID,Yang Yulin12,Liu Rongkai1,Chen Li1,Fei Hongxiao1,Hu Chao34,Shi Ronghua3,Zou You5

Affiliation:

1. School of Computer, Central South University, Changsha 410000, China

2. Hunan Hanma Technology Co., Ltd., Changsha 410083, China

3. School of Electronic Information, Central South University, Changsha 410000, China

4. Hunan “the 14th Five-Year Plan” Research Base of Education Sciences (Research on Educational Informatization), Central South University, Changsha 410083, China

5. Information and Networking Center, Central South University, Changsha 410083, China

Abstract

Spatio-temporal action detection (STAD) is a task receiving widespread attention and has numerous application scenarios, such as video surveillance and smart education. Current studies follow a localization-based two-stage detection paradigm, which exploits a person detector for action localization and a feature processing model with a classifier for action classification. However, many issues occur due to the imbalance between task settings and model complexity in STAD. Firstly, the model complexity of heavy offline person detectors adds to the inference overhead. Secondly, the frame-level actor proposals are incompatible with the video-level feature aggregation and Region-of-Interest feature pooling in action classification, which limits the detection performance under diverse action motions and results in low detection accuracy. In this paper, we propose a tracking-based two-stage spatio-temporal action detection framework called TrAD. The key idea of TrAD is to build video-level consistency and reduce model complexity in our STAD framework by generating action track proposals among multiple video frames instead of actor proposals in a single frame. In particular, we utilize tailored tracking to simulate the behavior of human cognitive actions and used the captured motion trajectories as video-level proposals. We then integrate a proposal scaling method and a feature aggregation module into action classification to enhance feature pooling for detected tracks. Evaluations in the AVA dataset demonstrate that TrAD achieves SOTA performance with 29.7 mAP, while also facilitating a 58% reduction in overall computation compared to SlowFast.

Funder

High Performance Computing Center of Central South University

National Natural Science Foundation

Hunan Educational Science

Hunan Social Science Foundation

Central South University Graduate Education Teaching Reform Project

Hunan Provincial Archives Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3