Cyber-Resilient Converter Control System for Doubly Fed Induction Generator-Based Wind Turbine Generators

Author:

Farrar Nathan1,Ali Mohd. Hasan1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, The Herff College of Engineering, The University of Memphis, Memphis, TN 38152, USA

Abstract

As wind turbine generator systems become more common in the modern power grid, the question of how to adequately protect them from cyber criminals has become a major theme in the development of new control systems. As such, artificial intelligence (AI) and machine learning (ML) algorithms have become major contributors to preventing, detecting, and mitigating cyber-attacks in the power system. In their current state, wind turbine generator systems are woefully unprepared for a coordinated and sophisticated cyber attack. With the implementation of the internet-of-things (IoT) devices in the power control network, cyber risks have increased exponentially. The literature shows the impact analysis and exploring detection techniques for cyber attacks on the wind turbine generator systems; however, almost no work on the mitigation of the adverse effects of cyber attacks on the wind turbine control systems has been reported. To overcome these limitations, this paper proposes implementing an AI-based converter controller, i.e., a multi-agent deep deterministic policy gradient (DDPG) method that can mitigate any adverse effects that communication delays or bad data could have on a grid-connected doubly fed induction generator (DFIG)-based wind turbine generator or wind farm. The performance of the proposed DDPG controller has been compared with that of a variable proportional–integral (VPI) control-based mitigation method. The proposed technique has been simulated and validated utilizing the MATLAB/Simulink software, version R2023A, to demonstrate the effectiveness of the proposed method. Also, the performance of the proposed DDPG method is better than that of the VPI method in mitigating the adverse impacts of cyber attacks on wind generator systems, which is validated by the plots and the root mean square error table found in the results section.

Publisher

MDPI AG

Reference21 articles.

1. Mahon, A. (2024, January 05). Wind Energy, Available online: https://www.pnnl.gov/wind-energy.

2. U.S. Department of the Interior (2024, January 05). Biden-Harris Administration Approves Sixth Offshore Wind Project, Available online: https://www.doi.gov/pressreleases/biden-harris-administration-approves-sixth-offshore-wind-project.

3. Abdelmassih, G., Al-Numay, M., and El Aroudi, A. (2021). Map optimization fuzzy logic framework in wind turbine site selection with application to the USA wind farms. Energies, 14.

4. Modeling of wind farm participation in AGC;Sun;IEEE Trans. Power Syst.,2013

5. FDI based on artificial neural network for low-voltage-ride-through in DFIG-based wind turbine;Adouni;ISA Trans.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3