A Full-Duplex 60 GHz Transceiver with Digital Self-Interference Cancellation

Author:

Wang Yisheng1,Thangarasu Bharatha Kumar2,Mahalingam Nagarajan2,Ma Kaixue2ORCID,Meng Fanyi2ORCID,Huang Yibo3,Yeo Kiat Seng12ORCID

Affiliation:

1. Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore

2. School of Microelectronics, Tianjin University, Tianjin 300072, China

3. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

This paper presents the design and measurement of an IEEE 802.11ad standard compatible RF transceiver for 60 GHz wireless communication systems. In addition to the traditional half-duplex (HD) mode, this work supports full-duplex (FD) operations to deliver better channel utilization and faster response times for the system. The isolation between the transmitter and receiver from the architecture design to system integration for FD operations has been fully considered. A digital self-interference cancellation (DSIC) is implemented in MATLAB to verify the FD performance. The super-heterodyne architecture with an intermediate frequency (IF) of 12 GHz is designed to suppress the image frequencies without using extra filters. A flexible phase-locked loop (PLL) synthesizer provides a local oscillator (LO) frequency with a 2 kHz resolution. Other than the time division duplex (TDD) mode used in the conventional 60 GHz system, a wide-bandwidth baseband digital variable-gain amplifier (DVGA) with a 3 dB bandwidth of more than 4 GHz also supports frequency division duplex (FDD) operations. The transceiver chip is fabricated using the Tower Jazz 0.18 µm SiGe BiCMOS process. With an on-board antenna, the transceiver covers all four channels in the 802.11ad standard, with MCS-12 (7.04 Gbps under 1.76 GSym/s and 16-QAM) under 1.5 m. In the proposed system design, the RF frontend-based self-interference (SI) suppression from the local transmitter to receiver LNA is around 54 dB. To achieve a practical FD application, the SI is further suppressed with the help of a digital SI compensation. The measured power consumption for the transmitter and receiver configurations are 194 mW and 231 mW, respectively, in HD mode and 398 mW for the FDD or FD operation mode.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3