Imaging of the Internal Structure of Permafrost in the Tibetan Plateau Using Ground Penetrating Radar

Author:

Wang Yao,Fu Zhihong,Lu Xinglin,Qin ShanqiangORCID,Wang Haowen,Wang Xiujuan

Abstract

The distribution of the permafrost in the Tibetan Plateau has dramatically changed due to climate change, expressed as increasing permafrost degradation, thawing depth deepening and disappearance of island permafrost. These changes have serious impacts on the local ecological environment and the stability of engineering infrastructures. Ground penetrating radar (GPR) is used to detect permafrost active layer depth, the upper limit of permafrost and the thawing of permafrost with the season’s changes. Due to the influence of complex structure in the permafrost layer, it is difficult to effectively characterize the accurate structure within the permafrost on the radar profile. In order to get the high resolution GPR profile in the Tibetan Plateau, the reverse time migration (RTM) imaging method was applied to GPR real data. In this paper, RTM algorithm is proven to be correct through the groove’s model of forward modeling data. In the Beiluhe region, the imaging result of GPR RTM profiles show that the RTM of GPR makes use of diffracted energy to properly position the reflections caused by the gravels, pebbles, cobbles and small discontinuities. It can accurately determine the depth of the active layer bottom interface in the migration section. In order to prove the accuracy of interpretation results of real data RTM section, we set up the three dielectric constant models based on the real data RTM profiles and geological information, and obtained the model data RTM profiles, which can prove the accuracy of interpretation results of three-line RTM profiles. The results of three-line RTM bears great significance for the study of complex structure and freezing and thawing process of permafrost at the Beiluhe region on the Tibetan Plateau.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3