Optimizing Performance of Hybrid Electrochemical Energy Storage Systems through Effective Control: A Comprehensive Review

Author:

Clemente Alejandro1,Arias Paula1,Gevorkov Levon1ORCID,Trilla Lluís1,Obrador Rey Sergi1ORCID,Roger Xavier Sanchez1ORCID,Domínguez-García José Luis1,Filbà Martínez Àlber1ORCID

Affiliation:

1. Power Systems Group, Catalonia Institute for Energy Research (IREC), 08930 Barcelona, Spain

Abstract

The implementation of energy storage system (ESS) technology with an appropriate control system can enhance the resilience and economic performance of power systems. However, none of the storage options available today can perform at their best in every situation. As a matter of fact, an isolated storage solution’s energy and power density, lifespan, cost, and response time are its primary performance constraints. Batteries are the essential energy storage component used in electric mobility, industries, and household applications nowadays. In general, the battery energy storage systems (BESS) currently available on the market are based on a homogeneous type of electrochemical battery. However, a hybrid energy storage system (HESS) based on a mixture of various types of electrochemical batteries can potentially provide a better option for high-performance electric cars, heavy-duty electric vehicles, industries, and residential purposes. A hybrid energy storage system combines two or more electrochemical energy storage systems to provide a more reliable and efficient energy storage solution. At the same time, the integration of multiple energy storage systems in an HESS requires advanced control strategies to ensure optimal performance and longevity of the system. This review paper aims to provide a comprehensive overview of the control systems used in HESSs for a wide range of applications. An overview of the various control strategies used in HESSs is offered, including traditional control methods such as proportional–integral–derivative (PID) control, and advanced control methods such as model predictive control (MPC), droop control (DC), sliding mode control (SMC), rule-based control (RBC), fuzzy logic control (FLC), and artificial neural network (ANN) control are discussed. The paper also highlights the recent developments in HESS control systems, including the use of machine learning techniques such as deep reinforcement learning (DRL) and genetic algorithms (GA). The paper provides not only a description and classification of various control approaches but also a comparison between control strategies from the evaluation of performance point of view. The review concludes by summarizing the key findings and future research directions for HESS control systems, which is directly linked to the research on machine learning and the mix of different control type strategies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3