Temporal Convolutional Network-Enhanced Real-Time Implicit Emotion Recognition with an Innovative Wearable fNIRS-EEG Dual-Modal System

Author:

Chen Jiafa1ORCID,Yu Kaiwei1ORCID,Wang Fei1ORCID,Zhou Zhengxian2,Bi Yifei1,Zhuang Songlin1,Zhang Dawei13

Affiliation:

1. Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Wuhu 241002, China

3. Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

Emotion recognition remains an intricate task at the crossroads of psychology and artificial intelligence, necessitating real-time, accurate discernment of implicit emotional states. Here, we introduce a pioneering wearable dual-modal device, synergizing functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to meet this demand. The first-of-its-kind fNIRS-EEG ensemble exploits a temporal convolutional network (TC-ResNet) that takes 24 fNIRS and 16 EEG channels as input for the extraction and recognition of emotional features. Our system has many advantages including its portability, battery efficiency, wireless capabilities, and scalable architecture. It offers a real-time visual interface for the observation of cerebral electrical and hemodynamic changes, tailored for a variety of real-world scenarios. Our approach is a comprehensive emotional detection strategy, with new designs in system architecture and deployment and improvement in signal processing and interpretation. We examine the interplay of emotions and physiological responses to elucidate the cognitive processes of emotion regulation. An extensive evaluation of 30 subjects under four emotion induction protocols demonstrates our bimodal system’s excellence in detecting emotions, with an impressive classification accuracy of 99.81% and its ability to reveal the interconnection between fNIRS and EEG signals. Compared with the latest unimodal identification methods, our bimodal approach shows significant accuracy gains of 0.24% for EEG and 8.37% for fNIRS. Moreover, our proposed TC-ResNet-driven temporal convolutional fusion technique outperforms conventional EEG-fNIRS fusion methods, improving the recognition accuracy from 0.7% to 32.98%. This research presents a groundbreaking advancement in affective computing that combines biological engineering and artificial intelligence. Our integrated solution facilitates nuanced and responsive affective intelligence in practical applications, with far-reaching impacts on personalized healthcare, education, and human–computer interaction paradigms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3