A New DSGRU-Based Intrusion Detection Method for the Internet of Things

Author:

Liu Yueling1ORCID,Lan Yingcong1,Yang Changsong123,Ding Yong14,Li Chunhai1

Affiliation:

1. Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

2. Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen 518055, China

3. Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China

4. Institute of Cyberspace Technology, HKCT Institute for Higher Education, Hong Kong 999077, China

Abstract

The Internet of Things (IoT), a rapidly developing technology, connects entities to the Internet through information sensing devices and networks. Recently, IoT has gained widespread application in daily life and work due to its high efficiency and convenience. However, with the rapid development of IoT, the systems are intruded upon by malicious users and hackers more and more frequently. As a result, intrusion detection has attracted significant attention, and numerous schemes have been proposed that can precisely identify malicious intrusion operations. However, the existing schemes suffer from several severe challenges, such as low accuracy, high computational overhead, and poor real-time performance, in processing large-scale, high-dimensional, and temporally correlated IoT network traffic data. To address these challenges, we propose a new intrusion detection scheme for IoT in this paper. Specifically, we first improve the traditional Gate Recurrent Unit (GRU) and design a novel neural network model, namely, the Deep Supplement Gate Recurrent Unit (DSGRU). This model comprises an Original Gate Recurrent Unit (OGRU), a Decode Gate Recurrent Unit (DGRU), and a Softmax activation function. Compared with the traditional GRU, our proposed DSGRU can more efficiently extract features from IoT network traffic data and reduce the loss of features caused by nonlinear transformations during the learning process. Subsequently, we adopt DSGRU to design a novel intrusion detection scheme for IoT. We also analyze the theoretical computational complexity of the proposed scheme. Finally, we implement our proposed intrusion detection scheme and evaluate its performance based on the UNSW-NB15 and NSL-KDD datasets. The experimental results demonstrate that our proposed DSGRU-based intrusion detection scheme achieves better performance, including in terms of Accuracy, Precision, Recall, F1_score, loss value, and efficiency.

Funder

Key Science and Technology Project of Guangxi

Central Guidance on Local Science and Technology Development Fund of Guangxi Province

Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies

Guangxi Key Laboratory of Trusted Software

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3