Augmented Grad-CAM++: Super-Resolution Saliency Maps for Visual Interpretation of Deep Neural Network

Author:

Gao Yongshun1,Liu Jie2,Li Weihan3,Hou Ming4,Li Yang2,Zhao Huimin15

Affiliation:

1. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China

2. Anhui CQC-CHEARI Technology Co., Ltd., Chuzhou 239057, China

3. Center of Engineering Training, Civil Aviation University of China, Tianjin 300300, China

4. Chuzhou Technical Supervision and Testing Center, Chuzhou 239000, China

5. Traction Power State Key Laboratory, Southwest Jiaotong University, Chengdu 610031, China

Abstract

In recent years, deep neural networks have shown superior performance in various fields, but interpretability has always been the Achilles’ heel of deep neural networks. The existing visual interpretation methods for deep neural networks still suffer from inaccurate and insufficient target localization and low-resolution saliency maps. To address the above issues, this paper presents a saliency map generation method based on image geometry augmentation and super-resolution called augmented high-order gradient weighting class activation mapping (augmented grad-CAM++). Unlike previous approaches that rely on a single input image to generate saliency maps, this method first introduces the image geometry augmentation technique to create a set of augmented images for the input image and generate activation mappings separately. Secondly, the augmented activation mappings are combined to form the final saliency map. Finally, a super-resolution technique is introduced to add pixel points to reconstruct the saliency map pixels to improve the resolution of the saliency map. The proposed method is applied to analyze standard image data and industrial surface defect images. The results indicate that, in experiments conducted on standard image data, the proposed method achieved a 3.1% improvement in the accuracy of capturing target objects compared to traditional methods. Furthermore, the resolution of saliency maps was three times higher than that of traditional methods. In the application of industrial surface defect detection, the proposed method demonstrated an 11.6% enhancement in the accuracy of capturing target objects, concurrently reducing the false positive rate. The presented approach enables more accurate and comprehensive capture of target objects with higher resolution, thereby enhancing the visual interpretability of deep neural networks. This improvement contributes to the greater interpretability of deep learning models in industrial applications, offering substantial performance gains for the practical deployment of deep learning networks in the industrial domain.

Funder

National Natural Science Foundation of China

Research and Innovation Funding Project for Postgraduates of Civil Aviation University of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3