Multispectral Pedestrian Detection Based on Prior-Saliency Attention and Image Fusion

Author:

Guo Jiaren12ORCID,Huang Zihao12,Tao Yanyun123

Affiliation:

1. School of Rail Transportation, Soochow University, Suzhou 215005, China

2. Suzhou Transportation Big Data Innovation & Application Laboratory, Suzhou 215005, China

3. Key Laboratory of Information Processing and Intelligent Control, Shanghai Jiaotong University, Shanghai 350121, China

Abstract

Detecting pedestrians in varying illumination conditions poses a significant challenge, necessitating the development of innovative solutions. In response to this, we introduce Prior-AttentionNet, a pedestrian detection model featuring a Prior-Attention mechanism. This model leverages the stark contrast between thermal objects and their backgrounds in far-infrared (FIR) images by employing saliency attention derived from FIR images via UNet. However, extracting salient regions of diverse scales from FIR images poses a challenge for saliency attention. To address this, we integrate Simple Linear Iterative Clustering (SLIC) superpixel segmentation, embedding the segmentation feature map as prior knowledge into UNet’s decoding stage for comprehensive end-to-end training and detection. This integration enhances the extraction of focused attention regions, with the synergy of segmentation prior and saliency attention forming the core of Prior-AttentionNet. Moreover, to enrich pedestrian details and contour visibility in low-light conditions, we implement multispectral image fusion. Experimental evaluations were conducted on the KAIST and OTCBVS datasets. Applying Prior-Attention mode to FIR-RGB images significantly improves the delineation and focus on multi-scale pedestrians. Prior-AttentionNet’s general detector demonstrates the capability of detecting pedestrians with minimal computational resources. The ablation studies indicate that the FIR-RGB+ Prior-Attention mode markedly enhances detection robustness over other modes. When compared to conventional multispectral pedestrian detection models, Prior-AttentionNet consistently surpasses them by achieving higher mean average precision and lower miss rates in diverse scenarios, during both day and night.

Funder

Key lab of digital signal and image Processing of Guangdong province

Key Laboratory of System Control and Information Processing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3