Constant-Voltage and Constant-Current Controls of the Inductive Power Transfer System for Electric Vehicles Based on Full-Bridge Synchronous Rectification

Author:

Cai Jin1,Sun Pan1,Ji Kai2,Wu Xusheng1,Ji Hang1,Wang Yuxiao1,Rong Enguo1ORCID

Affiliation:

1. School of Electrical Engineering, Naval University of Engineering, Wuhan 430000, China

2. National Key Laboratory of Electromagnetic Energy, Naval University of Engineering, Wuhan 430000, China

Abstract

When an inductive power transfer (IPT) system conducts wireless charging for electric cars, the coupling coefficient between the coils is easily affected by fluctuations in the external environment. With frequent changes in the battery load impedance, it is difficult for the IPT system to achieve constant-voltage and constant-current (CVCC) controls. A CVCC control method is proposed for the IPT system that has a double-sided LCC compensation structure based on full-bridge synchronous rectification. The proposed method achieved good dynamic stability and was able to effectively switch between the output current and voltage of the system by adjusting only the duty cycle of the switch on the secondary side of the rectification bridge. As a result, the system efficiency was improved. The output characteristics of the double-sided LCC compensation structure was derived and the conduction condition with zero voltage was analyzed by using four switches through two conduction time series of the rectifier circuit. Then, the output voltage of the synchronized rectifier was derived. The hardware implementation of the full-bridge controllable rectifier was described in detail. Finally, a MATLAB/Simulink 2018a simulation model was developed and applied to an 11 kW prototype to analyze and validate the design. The results showed that the designed system had good CVCC output characteristics and could maintain constant output under certain coupling offsets. Compared with semi synchronous rectification methods, the proposed method had a higher efficiency, which was 95.6% at the rated load.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China Youth Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3