Diffusion-Based Radio Signal Augmentation for Automatic Modulation Classification

Author:

Xu Yichen1,Huang Liang1ORCID,Zhang Linghong1,Qian Liping2ORCID,Yang Xiaoniu34

Affiliation:

1. The College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China

2. The College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

3. The Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou 310023, China

4. The National Key Laboratory of Electromagnetic Spacee Security, Jiaxing 314033, China

Abstract

Deep learning has become a powerful tool for automatically classifying modulations in received radio signals, a task traditionally reliant on manual expertise. However, the effectiveness of deep learning models hinges on the availability of substantial data. Limited training data often results in overfitting, which significantly impacts classification accuracy. Traditional signal augmentation methods like rotation and flipping have been employed to mitigate this issue, but their effectiveness in enriching datasets is somewhat limited. This paper introduces the Diffusion-based Radio Signal Augmentation algorithm (DiRSA), a novel signal augmentation method that significantly enhances dataset scale without compromising signal integrity. Utilizing prompt words for precise signal generation, DiRSA allows for flexible modulation control and significantly expands the training dataset beyond the original scale. Extensive evaluations demonstrate that DiRSA outperforms traditional signal augmentation techniques such as rotation and flipping. Specifically, when applied with the LSTM model in small dataset scenarios, DiRSA enhances modulation classification performance at SNRs above 0 dB by 6%.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3