A Proposed Hybrid Machine Learning Model Based on Feature Selection Technique for Tidal Power Forecasting and Its Integration

Author:

Aly Hamed H.1ORCID

Affiliation:

1. Smart Grid and Green Power Research Laboratory, Electrical and Computer Engineering Department, Dalhousie University, Halifax, NS B3H 4R2, Canada

Abstract

Renewable energy resources are playing a crucial role in minimizing fossil fuel emissions. Integrating machine learning techniques with tidal power forecasting could greatly enhance the accuracy and reliability of predictions, which is crucial for efficient energy production and management. A hybrid approach combining different methods often yields better results than relying on individual techniques. The accuracy of tidal current power is very important, especially for smart grid applications. This work proposes hybrid adaptive neuro-fuzzy inference system (ANFIS) with the Kalman filter (KF) and a neuro-wavelet (WNN) for tidal current speed, direction, and power forecasting. The turbine used in this study is driven by a direct drive permanent magnet synchronous generator (DDPMSG). The predictions of individual and hybrid models including the ANFIS, the Kalman filter, and the WNN for tidal current speed and the power it generates are compared with another dataset as a way of validation which is the tidal currents direction. Also, other published work results in the literature are compared to the proposed work. Different hybrid models are proposed for smart grid integration. The results of this work indicate that the hybrid model of the WNN and the ANFIS for tidal current power or speed forecasting has the highest performance compared to all other models.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3