Few-Shot Image Classification Based on Swin Transformer + CSAM + EMD

Author:

Sun Huadong12,Zhang Pengyi1ORCID,Zhang Xu12,Han Xiaowei12

Affiliation:

1. School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China

2. Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin 150028, China

Abstract

In few-shot image classification (FSIC), the feature extraction module of the traditional convolutional neural networks is often constrained by the local nature of the convolutional kernel. As a result, it becomes challenging to handle global information and long-distance dependencies effectively. In order to address this problem, an innovative FSIC method is proposed in this paper, which is the integration of Swin Transformer and CSAM and Earth Mover’s Distance (EMD) technology (STCE). We utilize the Swin Transformer network for image feature extraction, and perform CSAM attention mechanism feature weighting on the output feature map, while we adopt the EMD algorithm to generate the optimal matching flow between the structural units, minimizing the matching cost. This approach allows for a more precise representation of the classification distance between images. We have conducted numerous experiments to validate the effectiveness of our algorithm. On three commonly used few-shot datasets, namely mini-ImageNet, tiered-ImageNet, and FC100, the accuracy of one-shot and five-shot has reached the state of the art (SOTA) in the FSIC; the mini-ImageNet achieves an accuracy of 98.65 ± 0.1% for one-shot and 99.6 ± 0.2% for five-shot tasks, while tiered ImageNet has an accuracy of 91.6 ± 0.1% for one-shot tasks and 96.55 ± 0.27% for five-shot tasks. For FC100, the accuracy is 64.1 ± 0.3% for one-shot tasks and 79.8 ± 0.69% for five-shot tasks. On two commonly used few-shot datasets, namely CUB, CIFAR-FS, CUB achieves an accuracy of 83.1 ± 0.4% for one-shot and 92.88 ± 0.4% for five-shot tasks, while CIFAR-FS achieves an accuracy of 86.95 ± 0.2% for one-shot and 94 ± 0.4% for five-shot tasks.

Funder

Harbin City Science and Technology Plan Projects

Basic Research Support Program for Excellent Young Teachers in Provincial Undergraduate Universities in Heilongjiang Province

Collaborative Innovation Achievement Program of Double First-class Disciplines in Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3