A Novel CNFET SRAM-Based Compute-In-Memory for BNN Considering Chirality and Nanotubes

Author:

Kim Youngbae1ORCID,Alnatsheh Nader1ORCID,Yadav Nandakishor2ORCID,Cho Jaeik1,Jo Heeyoung1,Choi Kyuwon Ken1

Affiliation:

1. DA-Lab, Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA

2. Fraunhofer Institute of Photonics Microsystems IPMS, 01109 Dresden, Germany

Abstract

As AI models grow in complexity to enhance accuracy, supporting hardware encounters challenges such as heightened power consumption and diminished processing speed due to high throughput demands. Compute-in-memory (CIM) technology emerges as a promising solution. Furthermore, carbon nanotube field-effect transistors (CNFETs) show significant potential in bolstering CIM technology. Despite advancements in silicon semiconductor technology, CNFETs pose as formidable competitors, offering advantages in reliability, performance, and power efficiency. This is particularly pertinent given the ongoing challenges posed by the reduction in silicon feature size. We proposed an ultra-low-power architecture leveraging CNFETs for Binary Neural Networks (BNNs), featuring an advanced state-of-the-art 8T SRAM bit cell and CNFET model to optimize performance in intricate AI computations. Through meticulous optimization, we fine-tune the CNFET model by adjusting tube counts and chiral vectors, as well as optimizing transistor ratios for SRAM transistors and nanotube diameters. SPICE simulation in 32 nm CNFET technology facilitates the determination of optimal transistor ratios and chiral vectors across various nanotube diameters under a 0.9 V supply voltage. Comparative analysis with conventional FinFET-based CIM structures underscores the superior performance of our CNFET SRAM-based CIM design, boasting a 99% reduction in power consumption and a 91.2% decrease in delay compared to state-of-the-art designs.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3