An Intelligent System to Detect Advanced Persistent Threats in Industrial Internet of Things (I-IoT)

Author:

Javed Safdar Hussain,Ahmad Maaz BinORCID,Asif MuhammadORCID,Almotiri Sultan H.ORCID,Masood Khalid,Ghamdi Mohammad A. AlORCID

Abstract

The Industrial Internet of Things (I-IoT) is a manifestation of an extensive industrial network that interconnects various sensors and wireless devices to integrate cyber and physical systems. While I-IoT provides a considerable advantage to large-scale industrial enterprises, it is prone to significant security challenges in the form of sophisticated attacks such as Advanced Persistent Threat (APT). APT is a serious security challenge to all kinds of networks, including I-IoT. It is a stealthy threat actor, characteristically a nation-state or state-sponsored group that launches a cyber attack intending to gain unauthorized access to a computer network and remain undetected for a longer period. The latest intrusion detection systems face several challenges in detecting such complex cyber attacks in multifarious networks of I-IoT, where unpredictable and unexpected cyber attacks of such sophistication can lead to catastrophic effects. Therefore, these attacks need to be accurately and promptly detected in I-IoT. This paper presents an intelligent APT detection and classification system to secure I-IoT. After pre-processing, several machine learning algorithms are applied to detect and classify complex APT signatures accurately. The algorithms include Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, Gaussian Naive Bayes, Bagging, Extreme Gradient Boosting and Adaboost, which are applied on a publicly available dataset KDDCup99. Moreover, a comparative analysis is conducted among ML algorithms to select the appropriate one for the targeted domain. The experimental results indicate that the Adaboost classifier outperforms the others with 99.9% accuracy with 0.012 s execution time for detecting APT attacks. Furthermore, results are compared with state-of-the-art techniques that depict the superiority of the proposed system. This system can be deployed in mission-critical scenarios in the I-IoT domain.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3