Abstract
This paper presents an assessment of the potential behind the BiGRU-CNN artificial neural network to be used as an electric power theft detection tool. The network is based on different architecture layers of the bidirectional gated recurrent unit and convolutional neural network. The use of such a tool with this classification model can help energy sector companies to make decisions regarding theft detection. The BiGRU-CNN artificial neural network singles out consumer units suspected of fraud for later manual inspections. The proposed artificial neural network was programmed in python, using the keras package. The best detection model was that of the BiGRU-CNN artificial neural network when compared to multilayer perceptron, recurrent neural network, gated recurrent unit, and long short-term memory networks. Several tests were carried out using data of an actual electricity supplier, showing the effectiveness of the proposed approach. The metric values assigned to their classifications were 0.929 for accuracy, 0.885 for precision, 0.801 for recall, 0.841 for F1-Score, and 0.966 for area under the receiver operating characteristic curve.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献