A Lightweight and Practical Anonymous Authentication Protocol Based on Bit-Self-Test PUF

Author:

An YangORCID,Zhang Yuejiao,Cao Wenjun,Tong Zhiyan,He Zhangqing

Abstract

Physical unclonable function (PUF), a cryptographic primitive, has recently been used in protocol design because it can ensure a tamper-evident feature. In many PUF-based protocol schemes, helper data algorithms (HDA) or fuzzy extractors (FE) are used to generate strong keys from unreliable PUF responses. However, these methods inevitably introduce complex error correction techniques, which not only increase the overhead of embedded devices but also pose some security risks. We propose a novel HDA technology, which does not use any high-overhead error correction mechanism, greatly reducing the implementation complexity and execution overhead. The novel HDA exploits the strategy of bit-self-test (BST) and the PUF can extract the robust responses by using the real-time generated reliable flags, and then an entropy extractor is used to generate the reliable and random key with high entropy. Based on this novel HDA, we design a lightweight anonymous authentication protocol. The protocol uses pseudo-random function (PRF) and XOR operation instead of the traditional hash function and symmetric encryption algorithm, which ensures security while reducing the overhead. Moreover, the proposed protocol does not require the server to store a large number of challenge–response pairs (CRPs), which reduces the storage overhead on the server while avoiding the risk of leakage of CRPs. Moreover, the device identity ID is updated during each round of the authentication process, which prevents the device from being tracked and protects the privacy of the device. The implementation and performance analysis of the protocol prototype on a Zynq-7000 SoC XC7Z010 FPGA shows that the proposed scheme solves the problems encountered with existing schemes and has additional security properties.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RETRACTED: Analysis the performance of Delay Locked Loop Physically Unclonable Functions for smart energy meter;Journal of Intelligent & Fuzzy Systems;2024-03-24

2. Hardware-Based Methods for Electronic Device Protection against Invasive and Non-Invasive Attacks;Electronics;2023-11-02

3. Design of Efficient Built-in Self-Test Technique for Faulty TCAM Arrays;2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS);2023-10-27

4. FOM-CDS PUF: A Novel Configurable Dual State Strong PUF Based on Feedback Obfuscation Mechanism against Modeling Attacks;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2023-10-01

5. Lightweight Random Obfuscation Protocol: A PUF-based Mutual Authentication Protocol for IoT Devices;2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings);2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3