An Accuracy-Improved Fixed-Width Booth Multiplier Enabling Bit-Width Adaptive Truncation Error Compensation

Author:

Tang Song-Nien,Liao Jen-Chien,Chiu Chen-Kai,Ku Pei-Tong,Chen Yen-Shuo

Abstract

Fixed-width Booth multipliers (FWBMs) generate a product with the same bit width as the operand and have been extensively employed in many digital systems. Various truncation error compensation (TEC) schemes have been presented for FWBM designs, aiming to reduce hardware costs while preserving operation accuracy. In general, the existing TEC methods function adequately for an exact bit width of the operand but fail to consider the TEC effect for FWBM inputs with various bit-width levels. To address this issue, we propose a bit-width adaptive TEC (BWATEC) scheme for providing high-accuracy TEC functions that are adaptive to the multiple L′-bit numerical ranges of input data for an L-bit FWBM (L′ ≤ L). We also present adjustable architecture for a 16-bit FWBM to enable the proposed BWATEC scheme and evaluate the hardware performance, using the TSMC 40 nm standard cell library. Relative to the contrast 16-bit FWBM approaches that use state-of-the-art TEC methods, the proposed BWATEC-enabled FWBM design can achieve reductions in the area-delay-error product of 7.9–50.9%, 17.1–69.5%, 29.9–82.2%, and 100% for the 14-bit, 12-bit, 10-bit, and 8-bit inputs, respectively. Moreover, the resultant 16-bit FWBM with BWATEC was verified by using the field-programmable gate array for convolutional neural network acceleration.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Route Critical Nets in Upper Layers to Fix Timing Issues in Block Level CTS;2024 IEEE 4th International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI SATA);2024-05-17

2. Approximate Computing: Hardware and Software Techniques, Tools and Their Applications;Journal of Circuits, Systems and Computers;2023-09-20

3. Fast FPGA-Based Multipliers by Constant for Digital Signal Processing Systems;Electronics;2023-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3