Recognition of Cursive Pashto Optical Digits and Characters with Trio Deep Learning Neural Network Models

Author:

Rehman Muhammad Zubair,Mohd. Nawi Nazri,Arshad Mohammad,Khan Abdullah

Abstract

Pashto is one of the most ancient and historical languages in the world and is spoken in Pakistan and Afghanistan. Various languages like Urdu, English, Chinese, and Japanese have OCR applications, but very little work has been conducted on the Pashto language in this perspective. It becomes more difficult for OCR applications to recognize handwritten characters and digits, because handwriting is influenced by the writer’s hand dynamics. Moreover, there was no publicly available dataset for handwritten Pashto digits before this study. Due to this, there was no work performed on the recognition of Pashto handwritten digits and characters combined. To achieve this objective, a dataset of Pashto handwritten digits consisting of 60,000 images was created. The trio deep learning Convolutional Neural Network, i.e., CNN, LeNet, and Deep CNN were trained and tested with both Pashto handwritten characters and digits datasets. From the simulations, the Deep CNN achieved 99.42 percent accuracy for Pashto handwritten digits, 99.17 percent accuracy for handwritten characters, and 70.65 percent accuracy for combined digits and characters. Similarly, LeNet and CNN models achieved slightly less accuracies (LeNet; 98.82, 99.15, and 69.82 percent and CNN; 98.30, 98.74, and 66.53 percent) for Pashto handwritten digits, Pashto characters, and the combined Pashto digits and characters recognition datasets, respectively. Based on these results, the Deep CNN model is the best model in terms of accuracy and loss as compared to the other two models.

Funder

Research and Management Centre (RMC), Universiti Tun Hussein Onn Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3