Author:
Lee Hanleem,Chun Young Tea
Abstract
We developed solution-processed hybrid photodetectors with a poly (9-vinylcarbazole)/zinc oxide nanoparticle photoactive layer and a poly (vinylidene fluoride-co-trifluoroethylene) ferroelectric copolymer buffer layer on flexible plastic substrates. The presence of a ferroelectric-poling interface layer significantly enhanced the charge transfer and responsivity of the photodetectors under ultraviolet (UV, 365 nm) light exposure. The responsivity of the device reached 250 mA/W at a reverse bias of 5 V and incident light intensity of 27.5 μW/cm2. This responsivity was four times higher than that of a device without the ferroelectric copolymer layer (64 mA/W) under the same conditions. The response time of the device to incident UV light also improved from 322 to 34 ms with the addition of the ferroelectric copolymer layer. In addition, the flexible device exhibited a stable performance in an air environment up to a maximum strain of 0.3 under bending stress. Finally, a UV-light-responsive memory device was successfully fabricated by using the developed hybrid photodetector and liquid crystals. This device showed a colour change from white to black upon UV illumination, and the on-state of the device was maintained for 30 s without light exposure owing to the polarization of poly (vinylidene fluoride-co-trifluoroethylene).
Funder
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Korea Maritime and Ocean University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献