Spectral Classification Based on Deep Learning Algorithms

Author:

Xu Laixiang,Xie JunORCID,Cai Fuhong,Wu JingjinORCID

Abstract

Convolutional neural networks (CNN) can achieve accurate image classification, indicating the current best performance of deep learning algorithms. However, the complexity of spectral data limits the performance of many CNN models. Due to the potential redundancy and noise of the spectral data, the standard CNN model is usually unable to perform correct spectral classification. Furthermore, deeper CNN architectures also face some difficulties when other network layers are added, which hinders the network convergence and produces low classification accuracy. To alleviate these problems, we proposed a new CNN architecture specially designed for 2D spectral data. Firstly, we collected the reflectance spectra of five samples using a portable optical fiber spectrometer and converted them into 2D matrix data to adapt to the deep learning algorithms’ feature extraction. Secondly, the number of convolutional layers and pooling layers were adjusted according to the characteristics of the spectral data to enhance the feature extraction ability. Finally, the discard rate selection principle of the dropout layer was determined by visual analysis to improve the classification accuracy. Experimental results demonstrate our CNN system, which has advantages over the traditional AlexNet, Unet, and support vector machine (SVM)-based approaches in many aspects, such as easy implementation, short time, higher accuracy, and strong robustness.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Hainan Province

the scientific research fund of Hainan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3