Adaptive Dynamic Boundary Sliding Mode Control for Robotic Manipulators under Varying Disturbances

Author:

Song Zhendong1ORCID,Bao Danyang1ORCID,Wang Wenbin1,Zhao Wei1

Affiliation:

1. Industrial Robot Teaching and Research Office, School of Mechanical and Electrical Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China

Abstract

This paper introduces an Adaptive Dynamic Bounded Sliding Mode Control (ADBSMC) method that incorporates a disturbance observer to enhance the response characteristics of the robot manipulator while eliminating the reliance on a priori knowledge. The proposed method utilizes nonlinear sliding mode manifolds and fast-terminal-type convergence laws to address errors and parameter uncertainties inherent in the nonlinear system models. The adaptive law is designed to cover all boundary conditions based on the model’s state. It can dynamically determine upper and lower bounds without requiring prior knowledge. Consequently, the ADBSMC control method amalgamates the benefits of adaptive law and fast terminal sliding mode, leading to significant enhancements in control performance compared with traditional sliding mode control (SMC), exhibiting robustness against uncertain disturbances. To mitigate external disturbances, a system-adapted disturbance observer is devised, facilitating real-time monitoring and compensation for system disturbances. The stability of ADBSMC is demonstrated through the Lyapunov method. Simulation and experimental results validate the effectiveness and superiority of the ADBSMC control scheme, showcasing its potential for practical applications.

Funder

Guangdong Provincial Department of Education Characteristic Innovation Project

Natural Science Foundation of Guangdong Province

Shenzhen Outstanding Scientific and Technological Innovation Talents Training

Shenzhen Science and Technology Innovation Commission, Shenzhen Basic Research

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3