Traffic Fingerprints for Homogeneous IoT Traffic Based on Packet Payload Transition Patterns

Author:

Fan Mingrui1,Gao Jiaqi2,He Yaru2,Shi Weidong1,Lu Yueming1

Affiliation:

1. Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Traffic fingerprint was considered an effective security protection mechanism in IoT scenarios because it can be used to automatically identify accessed devices. However, the results of replication experiments show that the classic traffic fingerprints based on simple network traffic attribute features have a significantly lower ability to identify accessed devices in real 5G IoT scenarios compared to what was stated in traditional IoT scenarios. The growing homogenization of IoT traffic caused by the application of 5G is believed to be the reason for the poor ability of traditional traffic fingerprints to identify 5G IoT terminals. Studying an enhanced traffic fingerprint is necessary to accommodate the homogeneous Internet of Things traffic. In addition, during the reproducing experiments, we noticed that the solution of overlap is a key factor that restricts the recognition ability of one-vs-all multi-classifiers, and the efficiency of existing methods still has some room for optimization. Based on targeted improvements to these two issues, we proposed an enhanced IoT terminal traffic fingerprint based on packet payload transition patterns to improve the device recognition ability in homogeneous IoT traffic. Additionally, we designed an improved solution for overlap based on density centers to expedite decision making. According to the experimental results, when compared with the existing traffic fingerprint, the proposed traffic fingerprint in this study demonstrated a Macro-Average Precision of close to 90% for network traffic from real 5G IoT terminals. The proposed overlap solution based on the density centers reduced the decision-making time from hundreds of seconds to tens of seconds while ensuring decision-making accuracy.

Funder

National Key Research and Development Programmes of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3