Synthetic Data for Semantic Segmentation: A Path to Reverse Engineering in Printed Circuit Boards

Author:

Phoulady Adrian1,Choi Hongbin1,Suleiman Yara1,May Nicholas1,Shahbazmohamadi Sina1,Tavousi Pouya1

Affiliation:

1. School of Engineering, University of Connecticut, Storrs, CT 06269, USA

Abstract

This paper presents an innovative solution to the challenge of part obsolescence in microelectronics, focusing on the semantic segmentation of PCB X-ray images using deep learning. Addressing the scarcity of annotated datasets, we developed a novel method to synthesize X-ray images of PCBs, employing virtual images with predefined geometries and inherent labeling to eliminate the need for manual annotation. Our approach involves creating realistic synthetic images that mimic actual X-ray projections, enhanced by incorporating noise profiles derived from real X-ray images. Two deep learning networks, based on the U-Net architecture with a VGG-16 backbone, were trained exclusively on these synthetic datasets to segment PCB junctions and traces. The results demonstrate the effectiveness of this synthetic data-driven approach, with the networks achieving high Jaccard indices on real PCB X-ray images. This study not only offers a scalable and cost-effective alternative for dataset generation in microelectronics but also highlights the potential of synthetic data in training models for complex image analysis tasks, suggesting broad applications in various domains where data scarcity is a concern.

Funder

UConn REFINE center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3