GNN-Based Network Traffic Analysis for the Detection of Sequential Attacks in IoT

Author:

Altaf Tanzeela1ORCID,Wang Xu1ORCID,Ni Wei2,Yu Guangsheng2,Liu Ren Ping1,Braun Robin1ORCID

Affiliation:

1. School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

2. Data61, CSIRO, Sydney 2122, Australia

Abstract

This research introduces a novel framework utilizing a sequential gated graph convolutional neural network (GGCN) designed specifically for botnet detection within Internet of Things (IoT) network environments. By capitalizing on the strengths of graph neural networks (GNNs) to represent network traffic as complex graph structures, our approach adeptly handles the temporal dynamics inherent to botnet attacks. Key to our approach is the development of a time-stamped multi-edge graph structure that uncovers subtle temporal patterns and hidden relationships in network flows, critical for recognizing botnet behaviors. Moreover, our sequential graph learning framework incorporates time-sequenced edges and multi-edged structures into a two-layered gated graph model, which is optimized with specialized message-passing layers and aggregation functions to address the challenges of time-series traffic data effectively. Our comparative analysis with the state of the art reveals that our sequential gated graph convolutional neural network achieves substantial improvements in detecting IoT botnets. The proposed GGCN model consistently outperforms the conventional model, achieving improvements in accuracy ranging from marginal to substantial—0.01% for BoT IoT and up to 25% for Mirai. Moreover, our empirical analysis underscores the GGCN’s enhanced capabilities, particularly in binary classification tasks, on imbalanced datasets. These findings highlight the model’s ability to effectively navigate and manage the varying complexity and characteristics of IoT security threats across different datasets.

Publisher

MDPI AG

Reference31 articles.

1. Cisco (2020, March 09). Cisco Annual Internet Report (2018–2023). Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.

2. Evaluating critical security issues of the IoT world: Present and future challenges;Frustaci;IEEE Internet Things J.,2018

3. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications;Lin;IEEE Internet Things J.,2017

4. A survey on security and privacy issues in internet-of-things;Yang;IEEE Internet Things J.,2017

5. Benzarti, S., Triki, B., and Korbaa, O. (2017, January 8–10). A survey on attacks in Internet of Things based networks. Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS), Monastir, Tunisia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3