A Novel DOA Estimation Algorithm Based on Robust Mixed Fractional Lower-Order Correntropy in Impulsive Noise

Author:

Lan Xiaoyu1,Hu Jingyi1,Zhang Yudi2,Ma Shuang1ORCID,Tian Ye1ORCID

Affiliation:

1. College of Electronic Information Engineering, Shenyang Aerospace University, Shenyang 110000, China

2. Road Traffic Safety Research Center of the Ministry of Public Security, Beijing 100062, China

Abstract

The estimation of direction of arrival (DOA) is paramount in the realm of practical array signal processing systems. Nevertheless, traditional estimation methods often rely heavily on the Gaussian noise assumption, rendering them ineffective in achieving high-precision estimates in environments plagued by strong impulsive noise. To address this challenge, this paper introduces a novel DOA estimation algorithm that leverages mixed fractional lower-order correntropy (MFLOCR) in the context of Alpha-stable distributed impulsive noise. Correntropy is used as a measure of the similarity of the signals, using a Gaussian function to smooth extreme values and provide greater robustness against impulsive noise. By utilizing diverse kernel lengths to jointly regulate the kernel function, the concept of correntropy is expanded and implemented in the fractional lower-order moment (FLOM) algorithm for received signals. Subsequently, the MFLOCR is derived by adjusting the resulting form of correntropy. Finally, an enhanced DOA estimation algorithm is proposed that combines the MFLOCR operator with the MUSIC algorithm, specifically tailored for impulsive noise environments. Furthermore, a proof of boundedness is provided to validate the effectiveness of the proposed approach in such noisy conditions. Simulation experiments confirmed that the proposed method outperforms existing DOA estimation methods in the context of intense impulsive noise, a low generalized signal-to-noise ratio (GSNR), and a smaller number of snapshots.

Funder

Xingliao Talent Program Project of Liaoning Province

Songshan Laboratory Pre-Research Project

National Natural Science Foundation of China

Liaoning Provincial Education Department Facial Project

Natural Science Foundation of Liaoning Province of China

Open Fund of State Key Laboratory of Dynamic Measurement Technology

Aeronautical Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3