Road Scene Instance Segmentation Based on Improved SOLOv2

Author:

Yang Qing1,Peng Jiansheng12ORCID,Chen Dunhua1,Zhang Hongyu1

Affiliation:

1. College of Automation, Guangxi University of Science and Technology, Liuzhou 545000, China

2. Department of Artificial Intelligence and Manufacturing, Hechi University, Hechi 547000, China

Abstract

Road instance segmentation is vital for autonomous driving, yet the current algorithms struggle in complex city environments, with issues like poor small object segmentation, low-quality mask edge contours, slow processing, and limited model adaptability. This paper introduces an enhanced instance segmentation method based on SOLOv2. It integrates the Bottleneck Transformer (BoT) module into VoVNetV2, replacing the standard convolutions with ghost convolutions. Additionally, it replaces ResNet with an improved VoVNetV2 backbone to enhance the feature extraction and segmentation speed. Furthermore, the algorithm employs Feature Pyramid Grids (FPGs) instead of Feature Pyramid Networks (FPNs) to introduce multi-directional lateral connections for better feature fusion. Lastly, it incorporates a convolutional Block Attention Module (CBAM) into the detection head for refined features by considering the attention weight coefficients in both the channel and spatial dimensions. The experimental results demonstrate the algorithm’s effectiveness, achieving a 27.6% mAP on Cityscapes, a 4.2% improvement over SOLOv2. It also attains a segmentation speed of 8.9 FPS, a 1.7 FPS increase over SOLOv2, confirming its practicality for real-world engineering applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Innovation Fund of Chinese Universities Industry-University-Research

Young and Middle-aged Teachers in Guangxi Universities

Special research project of Hechi University

project of outstanding thousand young teachers’ training in higher education institutions of Guangxi

Guangxi Colleges and Universities Key Laboratory of AI and Information Processing

Education Department of Guangxi Zhuang Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3