A Novel Fractional Delay Proportional–Integral Multi-Resonant-Type Repetitive Control Based on a Farrow-Structure Filter for Grid-Tied Inverters

Author:

Liang Fen12ORCID,Lee Ho-Joon1ORCID,Zhao Qiangsong3

Affiliation:

1. Department of Electrical & Control Engineering, Cheongju University, Cheongju 28503, Republic of Korea

2. School of Mechanical and Electrical Engineering, Henan Industry and Trade Vocational College, Zhengzhou 451191, China

3. School of Electronic and Information, Zhongyuan University of Technology, Zhengzhou 451191, China

Abstract

The integer-order delay of proportional–integral multi-resonant-type repetitive control (PIMR-RC) cannot provide excellent control performance for grid-tied inverters when the grid frequency fluctuates. To address this issue and reduce control errors, a fractional delay PIMR-RC (FD-PIMR-RC) scheme is proposed. In addition, to reduce the computational load and memory consumption, a Farrow-structure fractional delay (FFD) filter is adopted. The digital filter with the Farrow structure is flexibly and efficiently used for fractional delay. For each new fractional delay, a large number of calculations and storage for the FFD filter coefficients are avoided, which significantly reduces the computational load and memory consumption. The parameter design of the FD-PIMR-RC scheme is provided in detail, including the implementation of fractional delay based on the Farrow structure. Then, a system stability analysis and parameter optimization are presented. Finally, simulations for the steady-state and dynamic responses are presented, and the validity of the proposed method is demonstrated.

Funder

Korean government

the Ministry of Education

Incubation Program for Young Master Supervisors

Foundation for University Youth Key Teachers by Henan province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3