Access Control Strategy for the Internet of Vehicles Based on Blockchain and Edge Computing

Author:

Li Leixiao123,Wan Jianxiong123,Liu Chuyi123

Affiliation:

1. College of Data Science and Applicatioon, Inner Mongolia University of Technology, Hohhot 010062, China

2. Inner Mongolia Autonomous Region Engineering, Technology Research Center of Big Data Based Software Service, Hohhot 010062, China

3. Research Center of Large-Scale Energy Storage Technologies, Hohhot 010062, China

Abstract

Data stored in the Internet of Vehicles (IoV) face problems with ease of tampering, easy disclosure and single access control. Based on this problem, we propose an access control scheme for the IoV based on blockchain, trust values and weighted attribute-based encryption, called the Blockchain Trust and Weighted Attribute-Based Access Control Strategy (BTWACS). First, we utilize both local and global blockchains to jointly maintain the generation, verification and storage of blocks, achieving distributed data storage and ensuring that data cannot arbitrarily be tampered with. Local blockchain mainly uses Road Side Unit (RSU) technology to calculate trust values, while global blockchain is mainly responsible for data storage and access policy selection. Secondly, we design a blockchain-based trust evaluation scheme called Blockchain-Based Trust Evaluation (BBTE). In this evaluation scheme, the trust value of the vehicle node is based on four factors: initial trust, historical experience trust, recommendation trust and RSU observation trust. CRITIC is used to determine the optimal weights of four factors to obtain the trust value. Then, we use the Network Simulator version 3 (NS3) to verify the security and accuracy of BBTE, improving the recognition accuracy and detection rate of malicious vehicle nodes. Finally, by mining the association relationships between attribute permissions among various roles, we construct a hierarchical access control strategy based on weight and trust, and further optimize the access strategy through pruning techniques. The experiment results indicate that this scheme can effectively respond to gray hole attacks, defamation attacks and collusion attacks from other vehicle nodes. This method can effectively reduce the computing and transmission costs of vehicles and meet the access requirements of multiple entities and roles in the IoV.

Funder

National Natural Science Foundation of China

Inner Mongolia Autonomous Region Key R&D and Achievement Transformation Program Project

Research Program for Young Talents of Inner Mongolia Colleges

Natural Science Foundation of Inner Mongolia

Key Research & Development Program of Erdos

Scientific Research Program for Inner Mongolia Colleges

Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3