Affiliation:
1. College of Data Science and Applicatioon, Inner Mongolia University of Technology, Hohhot 010062, China
2. Inner Mongolia Autonomous Region Engineering, Technology Research Center of Big Data Based Software Service, Hohhot 010062, China
3. Research Center of Large-Scale Energy Storage Technologies, Hohhot 010062, China
Abstract
Data stored in the Internet of Vehicles (IoV) face problems with ease of tampering, easy disclosure and single access control. Based on this problem, we propose an access control scheme for the IoV based on blockchain, trust values and weighted attribute-based encryption, called the Blockchain Trust and Weighted Attribute-Based Access Control Strategy (BTWACS). First, we utilize both local and global blockchains to jointly maintain the generation, verification and storage of blocks, achieving distributed data storage and ensuring that data cannot arbitrarily be tampered with. Local blockchain mainly uses Road Side Unit (RSU) technology to calculate trust values, while global blockchain is mainly responsible for data storage and access policy selection. Secondly, we design a blockchain-based trust evaluation scheme called Blockchain-Based Trust Evaluation (BBTE). In this evaluation scheme, the trust value of the vehicle node is based on four factors: initial trust, historical experience trust, recommendation trust and RSU observation trust. CRITIC is used to determine the optimal weights of four factors to obtain the trust value. Then, we use the Network Simulator version 3 (NS3) to verify the security and accuracy of BBTE, improving the recognition accuracy and detection rate of malicious vehicle nodes. Finally, by mining the association relationships between attribute permissions among various roles, we construct a hierarchical access control strategy based on weight and trust, and further optimize the access strategy through pruning techniques. The experiment results indicate that this scheme can effectively respond to gray hole attacks, defamation attacks and collusion attacks from other vehicle nodes. This method can effectively reduce the computing and transmission costs of vehicles and meet the access requirements of multiple entities and roles in the IoV.
Funder
National Natural Science Foundation of China
Inner Mongolia Autonomous Region Key R&D and Achievement Transformation Program Project
Research Program for Young Talents of Inner Mongolia Colleges
Natural Science Foundation of Inner Mongolia
Key Research & Development Program of Erdos
Scientific Research Program for Inner Mongolia Colleges
Basic Scientific Research Expenses Program of Universities directly under Inner Mongolia Autonomous Region
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献