A Smart and Robust Automatic Inspection of Printed Labels Using an Image Hashing Technique

Author:

Khan Mehshan Ahmed,Ahmed Fawad,Khan Muhammad Danial,Ahmad JawadORCID,Kumar HarishORCID,Pitropakis NikolaosORCID

Abstract

This work is focused on the development of a smart and automatic inspection system for printed labels. This is a challenging problem to solve since the collected labels are typically subjected to a variety of geometric and non-geometric distortions. Even though these distortions do not affect the content of a label, they have a substantial impact on the pixel value of the label image. Second, the faulty area may be extremely small as compared to the overall size of the labelling system. A further necessity is the ability to locate and isolate faults. To overcome this issue, a robust image hashing approach for the detection of erroneous labels has been developed. Image hashing techniques are generally used in image authentication, social event detection and image copy detection. Most of the image hashing methods are computationally extensive and also misjudge the images processed through the geometric transformation. In this paper, we present a novel idea to detect the faults in labels by incorporating image hashing along with the traditional computer vision algorithms to reduce the processing time. It is possible to apply Speeded Up Robust Features (SURF) to acquire alignment parameters so that the scheme is resistant to geometric and other distortions. The statistical mean is employed to generate the hash value. Even though this feature is quite simple, it has been found to be extremely effective in terms of computing complexity and the precision with which faults are detected, as proven by the experimental findings. Experimental results show that the proposed technique achieved an accuracy of 90.12%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3