Harvesting Systems for RF Energy: Trends, Challenges, Techniques, and Tradeoffs

Author:

Muhammad SurajoORCID,Tiang Jun JiatORCID,Wong Sew KinORCID,Rambe Ali H.,Adam IsmahayatiORCID,Smida AmorORCID,Waly Mohamed IbrahimORCID,Iqbal AmjadORCID,Abubakar Adamu Saidu,Mohd Yasin Mohd NajibORCID

Abstract

The RFEH design challenges can be broadly classified into overall radio frequency direct current (RF-to-DC) power conversion efficiency (PCE), form factor, operational bandwidth (BW), and compactness. A detailed overview of the essential components of an RFEH system is presented in this paper. Various design approaches have been proposed for the realization of compact RFEH circuits that contribute immensely to mm-wave rectenna design. Effective mechanisms for configuring the rectenna modules based on the recommended spectrums for the RFEH system were also outlined. This study featured a conceptual viewpoint on design tradeoffs, which were accompanied by profound EH solutions perspectives for wireless power communications. The work covers some challenges attributed to 5G EH in mm-wave rectenna: from a controlled source of communication signals to distributed ambient EH and system level design. Conversely, the primary targets of this work are to: (I) examine a wide range of ambient RF sources and their performance with various antennae and RF-rectifier layouts; (II) propose unique rectenna design techniques suitable for current trends in wireless technology; (III) explore numerous approaches for enhancing the rectenna or RF-rectifier efficiency in a low-power ambient environment; and (IV) present the findings of a comprehensive review of the exemplary research that has been investigated. These are aimed toward addressing the autonomous system’s energy challenges. Therefore, with the careful management of the reported designs, the rectenna systems described in this study would influence the upcoming advancement of the low-power RFEH module.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3