AAPFE: Aligned Assembly Pre-Training Function Embedding for Malware Analysis

Author:

Gui HairenORCID,Tang Ke,Shan Zheng,Qiao Meng,Zhang ChunyanORCID,Huang YizhaoORCID,Liu FudongORCID

Abstract

The use of natural language processing to analyze binary data is a popular research topic in malware analysis. Embedding binary code into a vector is an important basis for building a binary analysis neural network model. Current solutions focus on embedding instructions or basic block sequences into vectors with recurrent neural network models or utilizing a graph algorithm on control flow graphs or annotated control flow graphs to generate binary representation vectors. In malware analysis, most of these studies only focus on the single structural information of the binary and rely on one corpus. It is difficult for vectors to effectively represent the semantics and functionality of binary code. Therefore, this study proposes aligned assembly pre-training function embedding, a function embedding scheme based on a pre-training aligned assembly. The scheme creatively applies data augmentation and a triplet network structure to the embedding model training. Each sub-network extracts instruction sequence information using the self-attention mechanism and basic block graph structure information with the graph convolution network model. An embedding model is pre-trained with the produced aligned assembly triplet function dataset and is subsequently evaluated against a series of comparative experiments and application evaluations. The results show that the model is superior to the state-of-the-art methods in terms of precision, precision ranking at top N (p@N), and the area under the curve, verifying the effectiveness of the aligned assembly pre-training and multi-level information extraction methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3