Trend Research on Maritime Autonomous Surface Ships (MASSs) Based on Shipboard Electronics: Focusing on Text Mining and Network Analysis

Author:

Kim Jinsick1ORCID,Han Sungwon1,Lee Hyeyoung1,Koo Byeongsoo1,Nam Moonju1ORCID,Jang Kukjin1ORCID,Lee Jooyeoun2,Chung Myoungsug2

Affiliation:

1. Research Center for Science and Technology Policy and Convergence, Ajou University, 206, Suwon 16499, Republic of Korea

2. Department of Industrial Engineering, Ajou University, 206, Suwon 16499, Republic of Korea

Abstract

The growing adoption of electric propulsion systems in Maritime Autonomous Surface Ships (MASSs) necessitates advancements in shipboard electronics for safe, efficient, and reliable operation. These advancements are crucial for tasks such as real-time sensor data processing, control algorithms for autonomous navigation, and robust decision-making capabilities. This study investigates research trends in MASSs, using bibliographic analysis to identify policy and future research directions in this evolving field. We analyze 3363 MASS-related articles from the Web of Science database, employing co-occurrence word analysis and latent Dirichlet allocation (LDA) topic modeling. The findings reveal a rapidly growing field dominated by image recognition research. Keywords such as “datum”, “image”, and “detection” suggest a focus on collecting and analyzing marine data, particularly with deep learning for synthetic aperture radar imagery. LDA confirms this, with “image analysis and classification research” as the leading topic. The study also identifies national and organizational leaders in MASS research. However, research on Arctic routes lags behind that on other areas. This work provides valuable insights for policymakers and researchers, promoting a deeper understanding of MASSs and informing future policy and research agendas regarding the integration of electric propulsion systems within the maritime industry.

Funder

Science and Technology Policy Expert Development and Support Program

Publisher

MDPI AG

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3