CANARY: An Adversarial Robustness Evaluation Platform for Deep Learning Models on Image Classification

Author:

Sun Jiazheng12ORCID,Chen Li3,Xia Chenxiao3,Zhang Da1,Huang Rong1,Qiu Zhi1,Xiong Wenqi1,Zheng Jun12,Tan Yu-An12ORCID

Affiliation:

1. School of Cyberspace Science & Technology, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Key Laboratory of Software Security Engineering Technology, Beijing 100081, China

3. School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

The vulnerability of deep-learning-based image classification models to erroneous conclusions in the presence of small perturbations crafted by attackers has prompted attention to the question of the models’ robustness level. However, the question of how to comprehensively and fairly measure the adversarial robustness of models with different structures and defenses as well as the performance of different attack methods has never been accurately answered. In this work, we present the design, implementation, and evaluation of Canary, a platform that aims to answer this question. Canary uses a common scoring framework that includes 4 dimensions with 26 (sub)metrics for evaluation. First, Canary generates and selects valid adversarial examples and collects metrics data through a series of tests. Then it uses a two-way evaluation strategy to guide the data organization and finally integrates all the data to give the scores for model robustness and attack effectiveness. In this process, we use Item Response Theory (IRT) for the first time to ensure that all the metrics can be fairly calculated into a score that can visually measure the capability. In order to fully demonstrate the effectiveness of Canary, we conducted large-scale testing of 15 representative models trained on the ImageNet dataset using 12 white-box attacks and 12 black-box attacks and came up with a series of in-depth and interesting findings. This further illustrates the capabilities and strengths of Canary as a benchmarking platform. Our paper provides an open-source framework for model robustness evaluation, allowing researchers to perform comprehensive and rapid evaluations of models or attack/defense algorithms, thus inspiring further improvements and greatly benefiting future work.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3