A Dynamic Addressing Hybrid Routing Mechanism Based on Static Configuration in Urban Rail Transit Ad Hoc Network

Author:

Han Zijie1,Liu Liu1ORCID,Guo Zhibin2,Su Zhaoyang1,Suo Lei1,Cai Shiyuan1,Han Haitao3

Affiliation:

1. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

2. Intelligent Network Innovation Center, China United Network Communications Co., Ltd., Beijing 100048, China

3. Traffic Control Technology Co., Ltd., Beijing 100071, China

Abstract

With the rapid development of urban rail transit, the traditional urban rail wireless network based on fixed infrastructure is not in a position to meet the increasingly complex communication demand. At the same time, Ad Hoc network, as a special wireless mobile network, is developing rapidly. Applying this self-organized networking architecture to the urban rail vehicle–ground communication network can overcome the problems existing in the traditional urban rail communication system. The routing protocols that can achieve low delay and highly reliable data transmission are important in the urban rail transit scenario. Therefore, combined with the wireless Ad Hoc network and the characteristics of the urban rail transit scenario, this paper proposes a dynamic addressing hybrid routing mechanism based on static configuration. Using an improved AODV routing discovery algorithm and then writing the routing table into the router in advance for static configuration not only reduces network overhead but also prolongs the network’s lifetime. It also saves the delay of routing discovery. Then, the cluster head node dynamically monitors the link status, dynamically finds the path when the link needs to be replaced, and selects different update paths according to different types of communication services. Finally, each algorithm’s network performance parameters, like the routing discovery overhead, residual link lifetime, packet delivery rate, throughput, and end-to-end delay, are analyzed and compared.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3