Affiliation:
1. School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China
2. Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China
Abstract
To maximize the utilization of renewable energy (RE) as much as possible in cold areas while reducing traditional energy use and carbon dioxide emissions, a three-layer configuration optimization and scheduling model considering a multi-park integrated energy system (MPIES), a shared energy storage power station (SESPS), and a hydrogen refueling station (HRS) cooperation based on the Wasserstein generative adversarial networks, the simultaneous backward reduction technique, and the Quantity-Contour (WGAN-SBR_QC) method is proposed. Firstly, the WGAN-SBR_QC method is used to generate typical scenarios of RE output. Secondly, a three-layer configuration and schedule optimization model is constructed using MPIES, SESPS, and HRS. Finally, the model’s validity is investigated by selecting a multi-park in Eastern Mongolia. The results show that: (1) the typical scenario of RE output improved the overall robustness of the system. (2) The profits of the MPIES and HRS increased by 1.84% and 52.68%, respectively, and the SESPS profit increased considerably. (3) The proposed approach increased RE utilization to 99.47% while reducing carbon emissions by 32.67%. Thus, this model is a reference for complex energy system configuration and scheduling, as well as a means of encouraging RE use.
Funder
Beijing Natural Science Foundation
Natural Science Foundation of China
National Office for Philosophy and Social Sciences
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献