Use of a Realistic Ray-Based Model for the Evaluation of Indoor RF Coverage Solutions Using Reconfigurable Intelligent Surfaces

Author:

Vitucci Enrico M.1ORCID,Fabiani Mattia1,Degli-Esposti Vittorio1ORCID

Affiliation:

1. Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, 40126 Bologna, Italy

Abstract

A previously developed Huygens-based, “antenna-array-like” macroscopic model for scattering from metasurfaces is embedded into a ray-tracing tool and used to carry out realistic RF-coverage evaluations in indoor environment. Using the reciprocity of the link, we extend prediction to multiple-bounce paths that include metasurface scattering at the beginning or at the end of the interaction chain. The proposed model allows us to carry out coverage evaluations for any realistic RIS design by modifying a few simple parameters. In this work, reference environments such as T–shaped and L–shaped corridor cases are considered with different deployment solutions of anomalous and focusing reflectors. The results show that a gain of about 15–20 dB can be obtained in blind-spot locations with proper RIS placement and configuration, without the use of any additional active radio head, even when using simple designs such as pre-configured lossy phase-gradient metasurfaces.

Funder

Italian Ministry of University and Research

Eu COST Action INTERACT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3