Robustness Assessment of Cyber–Physical System with Different Interdependent Mechanisms

Author:

Wang Peixiang1ORCID,Wang Qianyi1ORCID,Tu Haicheng1,Xia Yongxiang1ORCID

Affiliation:

1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Cyber–physical systems (CPSs) are a new generation of intelligent system that integrate communication, control and computation functions and are widely used in traditional infrastructure networks, such as power network, transportation network and others. In order to ensure the stable operation and improve the robustness of CPSs, the studies of robustness assessment have attracted much attention from academia. However, previous models assume that the failure propagation conforms to a strongly interdependent relationship, and only consider the interaction between nodes, while ignoring the interaction between nodes and links. In this paper, we develop a novel simulation model with the consideration of both the coupling modes and the failure propagation objects. Based on the simulation model, we study how the interdependent mechanisms, failure propagation probability and protection strategies affect the robustness of CPSs. The simulations of our proposed model are demonstrated in a test CPS formed by coupling two classical complex networks. Compared with previous models, our proposed model shows different performances and comprehensively characterizes the interdependent relationship of CPSs. In detail, disassortative coupling shows the worst performance and the CPS becomes more sensitive to failure propagation when Node–Link is selected as the failure propagation object. In addition, compared to the communication network, the power network is more sensitive to failure propagation. Protecting electrical nodes is a more effective way to strengthen the robustness of CPSs when conservation resources are limited. Our work provides useful advice to operators on how to effectively design and protect a CPS.

Funder

The Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3