Tracking the Rhythm: Pansori Rhythm Segmentation and Classification Methods and Datasets

Author:

Pandeya Yagya RajORCID,Bhattarai BhuwanORCID,Lee Joonwhoan

Abstract

This paper presents two methods to understand the rhythmic patterns of the voice in Korean traditional music called Pansori. We used semantic segmentation and classification-based structural analysis methods to segment the seven rhythmic categories of Pansori. We propose two datasets; one is for rhythm classification and one is for segmentation. Two classification and two segmentation neural networks are trained and tested in an end-to-end manner. The standard HR network and DeepLabV3+ network are used for rhythm segmentation. A modified HR network and a novel GlocalMuseNet are used for the classification of music rhythm. The GlocalMuseNet outperforms the HR network for Pansori rhythm classification. A novel segmentation model (a modified HR network) is proposed for Pansori rhythm segmentation. The results show that the DeepLabV3+ network is superior to the HR network. The classifier networks are used for time-varying rhythm classification that behaves as the segmentation using overlapping window frames in a spectral representation of audio. Semantic segmentation using the DeepLabV3+ and the HR network shows better results than the classification-based structural analysis methods used in this work; however, the annotation process is relatively time-consuming and costly.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Multiple Scale Music Segmentation Using Rhythm, Timbre, and Harmony

2. Music Similarity Measures: What’s the Use?;Aucouturier;Proceedings of the 3rd International Conference on Music Information Retrieval (ISMIR 2002),2002

3. Music segmentation by rhythmic features and melodic shapes;Chen;Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No. 04TH8763),2004

4. A Framework for Analysis of Music Similarity Measures;Jensen;Proceedings of the 15th European Signal Processing Conference,2007

5. A Music Similarity Model Based on Data Analysis and Algorithm Application;Jia;Proceedings of the 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID),2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3