Abstract
Multivariate time series are often accompanied with missing values, especially in clinical time series, which usually contain more than 80% of missing data, and the missing rates between different variables vary widely. However, few studies address these missing rate differences and extract univariate missing patterns simultaneously before mixing them in the model training procedure. In this paper, we propose a novel recurrent neural network called variable sensitive GRU (VS-GRU), which utilizes the different missing rate of each variable as another input and learns the feature of different variables separately, reducing the harmful impact of variables with high missing rates. Experiments show that VS-GRU outperforms the state-of-the-art method in two real-world clinical datasets (MIMIC-III, PhysioNet).
Funder
National Nature Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献