Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling

Author:

Papaioannou Emmanouil H.,Mazzei RosalindaORCID,Bazzarelli Fabio,Piacentini EmmaORCID,Giannakopoulos VasileiosORCID,Roberts Michael R.ORCID,Giorno LidiettaORCID

Abstract

The agri-food sector generates substantial quantities of waste material on farm and during the processing of these commodities, creating serious social and environmental problems. However, these wastes can be resources of raw material for the production of valuable chemicals with applications in various industrial sectors (e.g., food ingredients, nutraceuticals, bioderived fine chemicals, biofuels etc.). The recovery, purification and biotransformation of agri-food waste phytochemicals from this microbial spoilage-prone, complex agri-food waste material, requires appropriate fast pre-treatment and integration of various processes. This review provides a brief summary and discussion of the unique advantages and the importance of membrane technology in sustainable recycling of phytochemicals from some of the main agri-food sectors. Membrane-based pressure -driven processes present several advantages for the recovery of labile compounds from dilute streams. For example, they are clean technologies that can operate at low temperature (20–60 °C), have low energy requirements, there is no need for additional chemicals, can be quite automated and electrifiable, and have low space requirements. Based on their permselective properties based on size-, shape-, and charge-exclusion mechanisms, membrane-based separation processes have unpaired efficiency in fractionating biological components while presenting their properties. Pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF), as well as other advanced membrane-based processes such as membrane bioreactors (MBR), membrane emulsification (ME) and membrane distillation (MD), are presented. The integration of various membrane technologies from the initial recovery of these phytochemicals (MF, UF, NF) to the final formulation (by ME) of commercial products is described. A good example of an extensively studied agri-food stream is the olive processing industry, where many different alternatives have been suggested for the recovery of biophenols and final product fabrication. Membrane process integration will deliver in the near future mature technologies for the efficient treatment of these streams in larger scales, with direct impact on the environmental protection and society (production of compounds with positive health effects, new job creation, etc.). It is expected that integration of these technologies will have substantial impact on future bio-based societies over forthcoming decades and change the way that these chemicals are currently produced, moving from petrochemical-based linear product fabrication to a sustainable circular product design based in agri-food waste biomass.

Funder

Royal Society

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3