Revisiting Quantification of Phenylalanine/Tyrosine Flux in the Ochronotic Pathway during Long-Term Nitisinone Treatment of Alkaptonuria

Author:

Ranganath Lakshminarayan R.,Hughes Andrew T.,Davison Andrew S.ORCID,Khedr Milad,Imrich Richard,Rudebeck MattiasORCID,Olsson Birgitta,Norman Brendan P.ORCID,Bou-Gharios George,Gallagher James A.,Milan Anna M.ORCID

Abstract

Changes in the phenylalanine (PHE)/tyrosine (TYR) pathway metabolites before and during homogentisic acid (HGA)-lowering by nitisinone in the Suitability of Nitisinone in Alkaptonuria (AKU) 2 (SONIA 2) study enabled the magnitude of the flux in the pathway to be examined. SONIA 2 was a 48-month randomised, open-label, evaluator-blinded, parallel-group study performed in the UK, France and Slovakia recruiting patients with confirmed AKU to receive either 10 mg nitisinone or no treatment. Site visits were performed at 3 months and yearly thereafter. Results from history, photographs of eyes/ears, whole body scintigraphy, echocardiography and abdomen/pelvis ultrasonography were combined to produce the Alkaptonuria Severity Score Index (cAKUSSI). PHE, TYR, hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and HGA metabolites were analysed by liquid chromatography/tandem mass spectrometry in 24 h urine and serum samples collected before and during nitisinone. Serum metabolites were corrected for total body water (TBW), and the sum of 24 h urine plus total body water metabolites of PHE, TYR, HPPA, HPLA and HGA were determined. The sum of urine metabolites (PHE, TYR, HPPA, HPLA and HGA) were similar pre- and peri-nitisinone. The sum of TBW metabolites and sum TBW + URINE metabolites were significantly higher peri-nitisinone (p < 0.001 for both) compared with pre-nitisinone baseline. Significantly higher concentrations of metabolites from the tyrosine metabolic pathway were observed during treatment with nitisinone. Arguments for unmasking of the ochronotic pathway and biliary elimination of HGA are put forward.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3