Abstract
There is growing evidence of the presence of pharmaceuticals in natural waters and their accumulation in aquatic organisms. While their mode of action on non-target organisms is still not clearly understood, their effects warrant assessment. The present study assessed the metabolome of the Mediterranean mussel (Mytilus galloprovincialis) exposed to a 10 µg/L nominal concentration of the antidepressant venlafaxine (VLF) at 3 time-points (1, 3, and 7 days). Over the exposure period, we observed up- or down-modulations of 113 metabolites, belonging to several metabolisms, e.g., amino acids (phenylalanine, tyrosine, tryptophan, etc.), purine and pyrimidine metabolisms (adenosine, cyclic AMP, thymidine, etc.), and several other metabolites involved in diverse functions. Serotonin showed the same time-course modulation pattern in both male and female mussels, which was consistent with its mode of action in humans, i.e., after a slight decrease on the first day of exposure, its levels increased at day 7 in exposed mussels. We found that the modulation pattern of impacted metabolites was not constant over time and it was gender-specific, as male and female mussels responded differently to VLF exposure.
Funder
Agence Nationale de la Recherche
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献