Abstract
Non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) are the metabolites of fat mobilization initiated by negative energy balance (NEB) during the perinatal period in dairy cows, which have an adverse effect on cell physiology of various bovine cell types. The aim of this study was to explore the biological roles of NEFA and BHBA on provoking oxidative stress and inflammatory responses in bovine mammary epithelial cells (BMECs). RNA sequencing analysis showed that there are 1343, 48, and 1725 significantly differentially expressed genes (DEGs) in BMECs treated with NEFA, BHBA and their combination. GO functional analysis revealed that the DEGs were significantly enriched in “response to oxidative stress” and “inflammatory response”. Further study demonstrated that NEFA and BHBA elevated the malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation and reduced the total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activity to cause oxidative stress. In addition, expression of inflammatory markers (NO, TNF-α, IL-6, and IL-1β) were increased after NEFA and BHBA stimulation. Mechanistically, our data showed that NEFA and BHBA activated the MAPK signaling pathway. Collectively, our results indicate that NEFA and BHBA induce oxidative stress and inflammatory response probably via the MAPK signaling pathway in BMECs.
Funder
National Natural Science Foundation of China
National Key R&D Program of China, key projects of international scien-tific and technological innovation cooperation
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献